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Abstract 14 

The applications of novel deep learning techniques in atmospheric science are rising quickly. 15 

Here we build a hybrid deep learning (DL) model (hyDL-CO), based on convolutional neural 16 

networks (CNN) and long short-term memory (LSTM) neural networks to provide a 17 

comparative analysis between DL and Kalman Filter (KF) to predict carbon monoxide (CO) 18 

concentrations in China in 2015-2020. We find the performance of DL model is better than KF 19 

in the training period (2015-2018): the mean bias and correlation coefficients are 9.6 ppb and 20 

0.98 over E. China, and -12.5 ppb and 0.96 over grids with independent observations. By 21 

contrast, the assimilated CO concentrations by KF exhibit comparable correlation coefficients 22 

but larger negative biases. Furthermore, DL model demonstrates good temporal extensibility: 23 

the mean bias and correlation coefficients are 95.7 ppb and 0.93 over E. China, and 81.0 ppb 24 

and 0.91 over grids with independent observations in 2019-2020, while CO observations are 25 

not fed into the DL model as an input variable. Despite these advantages, our analysis indicates 26 

a noticeable underestimation of CO concentrations at extreme pollution events in the DL 27 

model. This work demonstrates the advantages and disadvantages of DL models to predict 28 

atmospheric compositions in respective to traditional data assimilation, which is helpful for 29 

better applications of this novel technique in future studies. 30 
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1. Introduction 31 

Accurate simulation and prediction of air pollutants are critical for making effective 32 

policies to improve air quality. Chemical transport models (CTMs), as powerful tools, have 33 

been widely used to simulate atmospheric compositions (Li et al., 2019; Chen, X. et al., 2021; 34 

Lu et al., 2021). Despite the advances of CTMs, there are still noticeable discrepancies in the 35 

simulations due to uncertainties in the emission, physical and chemical processes (Quennehen 36 

et al., 2016; Kong et al., 2020). Atmospheric observations are thus used to evaluate the capacity 37 

of CTMs to capture the observed variabilities in atmospheric composition. For example, Liu et 38 

al. (2018) found the modeled spatial variability of nitrogen dioxides (NO2) matches well with 39 

surface observations but with a large bias in their concentrations. Zhang et al. (2021) exhibited 40 

a difference between modeled and observed surface fine particulate matter (PM2.5) and ozone 41 

(O3): the modeled PM2.5 and O3 concentrations are higher than observations by about 40% and 42 

15% in China in 2013-2017, respectively. 43 

Based on CTMs, data assimilation techniques integrate simulations and observations and 44 

thus can improve the modeled atmospheric compositions. For instance, Feng et al. (2018) found 45 

the assimilation of surface PM2.5 observations can effectively reduce the uncertainties in PM2.5 46 

forecasts. Peng et al. (2018) assimilated surface observations, including PM2.5, NO2, O3, CO, 47 

and obtained near-perfect forecasts on the first day, but the effects of the data assimilation 48 

decayed quickly with longer forecasts. The propagation of observational information in data 49 

assimilation depends on the modeled physical and chemical processes, i.e., the adjustment over 50 

grids lacking observations relies on regional transport of observational information from other 51 

grids. The assimilated results are thus, still affected by potential model errors (e.g., the 52 

uncertainty in transport), which can lead to rapid decline of assimilation effects, if observations 53 

become unavailable. 54 

Accompanied with recent advance of machine learning (ML) techniques, novel data-55 
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driven architectures and approaches have been extensively applied in the field of atmospheric 56 

science (Li et al., 2020; Zhang et al., 2020; Shi et al., 2021; Xing et al., 2021). Based on 57 

artificial neural networks, particularly, CNNs, DL uses multiple layers of computational 58 

kernels to extract and capture non-linear relationships between input and output variables. The 59 

predictions, provided by DL, are driven by observational or reanalysis data sets, which provides 60 

a new way to predicting atmospheric compositions without the influences from model errors. 61 

The non-linear relationships learned in the training data set can be extended spatially and 62 

temporally, for example, Kleinert et al. (2021) found the DL model can forecast surface O3 63 

within a 4-day range. The application of LSTM networks further improves the ability of DL 64 

models in capturing temporal dynamics, for example, Chen, Y. et al. (2021) found the LSTM-65 

based approach can provide a good prediction for surface PM2.5 on the next day; He et al. (2021) 66 

exhibited the capability of DL model to predict surface O3 in the North America.  67 

Despite the advantages of the DL approaches, the lack of parameterization of physical 68 

and chemical processes implies the predicted atmospheric compositions may deviate from the 69 

realistic atmospheric state, in contrast to conventional data assimilation approaches that are 70 

constrained by modeled processes. Tropospheric CO is one of the most important pollutants 71 

with significant sources from fossil fuel combustion. Because of the lifetime (about 1-2 72 

months), tropospheric CO is an ideal tracer for atmospheric transport and has been sufficiently 73 

investigated with data assimilations (Feng et al., 2020; Peng et al., 2018; Tang et al., 2021). In 74 

this study, we present an application of a hybrid DL model (hyDL-CO) on prediction of surface 75 

CO in China from 2015 to 2020, which utilizes both CNNs and LSTMs. We perform a 76 

comparative analysis between the DL model and a KF system in this work, to investigate the 77 

performances of the two approaches in predicting CO. This comparison is helpful for 78 

understanding the advantages and disadvantages of the DL approach in respective to traditional 79 

data assimilation, which is critical for better applications of this novel technique in atmospheric 80 
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environmental studies in the future. 81 

This paper is organized as follows: in Section 2, we describe the CO observations, the 82 

KF approach and the hyDL-CO model used in this work. In Section 3, we assess the predicted 83 

CO by the DL model, the changes in CO emissions in China, as well as the comparison between 84 

the DL model and KF, and the evaluation with independent observations. Our conclusions 85 

follow in Section 4. 86 

 87 

2. Data and Methodology 88 

2.1 MEE surface CO measurements 89 

We use the China Ministry of Ecology and Environment (MEE) monitoring network 90 

surface in-situ CO concentration data (https://quotsoft.net/air/) for the period of 2015–2020. 91 

These real-time monitoring stations have the ability to report hourly concentrations of criteria 92 

pollutants from about 1700 sites in 2020. Concentrations were reported by the MEE in units of 93 

ug/m3 under standard temperature (273 K) until 31 August 2018. This reference state was 94 

changed on 1 September 2018 to 298 K. We converted CO concentrations to ppb and rescaled 95 

post-August 2018 concentrations to standard temperature (273 K) to keep the consistency in 96 

the trend analysis. The reported data with CO concentrations larger than 6000 ppb are removed 97 

in our analysis. The station-based observations are averaged and regrided to the 0.5°x0.625° 98 

grid of the MERRA-2 reanalysis using the nearest neighborhood interpolation algorithm, with 99 

totally about 500 grids having observations. 10% grid-based observations (about 50 grids) are 100 

randomly selected as independent observations, which are only used in the evaluation of the 101 

predicted CO from the DL model and the KF system. The training of the DL model and the 102 

assimilation using the KF are performed using the remaining 90% observations. 103 

 104 

2.2 KF approach 105 

We employ the sequential KF based on the GEOS-Chem CTM to assimilate surface CO 106 

observations. This approach has been used in previous studies to optimize tropospheric CO 107 

https://doi.org/10.5194/gmd-2021-420
Preprint. Discussion started: 1 February 2022
c© Author(s) 2022. CC BY 4.0 License.



5 
 

concentrations (Jiang et al., 2017; Tang et al., 2021). The GEOS-Chem model 108 

(http://www.geos-chem.org, version 12-8-1) is driven by assimilated meteorological data of 109 

MERRA-2. Our analysis is conducted at a horizontal resolution of nested 0.5°x0.625° and 110 

employs the CO-only simulation in GEOS-Chem, which uses archived monthly OH fields from 111 

the full chemistry simulation (Fisher et al., 2017). The CO boundary conditions are updated 112 

every 3-hour from a global simulation with 4° × 5° resolution. Emissions in GEOS-Chem are 113 

computed by the Harvard-NASA Emission Component (HEMCO). Global default 114 

anthropogenic emissions are from the Community Emissions Data System (CEDS) (Hoesly et 115 

al., 2018) and replaced by MEIC (Multiresolution Emission Inventory for China) in China and 116 

MIX (full name) in other regions of Asia (Li et al., 2017). The total anthropogenic CO 117 

emissions in MEIC inventory are further scaled with linear projection. We refer the reader to 118 

Chen, X. et al. (2021) for the details of model configurations. 119 

In the assimilation algorithm, the forward model (M) predicts CO concentration (𝑥𝑎𝑡) at 120 

time t:  121 

𝑥𝑎𝑡 = 𝑀𝑡𝑥𝑡−1    (Eq. 1) 122 

The optimized CO concentrations can be expressed as: 123 

𝑥𝑡 = 𝑥𝑎𝑡 + 𝐺𝑡(𝑦𝑡 −𝐾𝑡𝑥𝑎𝑡)   (Eq. 2) 124 

where 𝑦𝑡 is observation, 𝐾𝑡 represents operation operator which projects CO concentrations 125 

from the model space to observation space. 𝐺𝑡 is the KF Gain matrix, which can be described 126 

as: 127 

𝐺𝑡 = 𝑆𝑎𝑡𝐾𝑡
𝑇(𝐾𝑡𝑆𝑎𝑡𝐾𝑡

𝑇 + 𝑆𝜖)
−1  (Eq. 3) 128 

where 𝑆𝑎𝑡  and 𝑆𝜖  are model and observation covariance, respectively. Because the DL 129 

model is designed to reproduce observations without considering error covariance, here we 130 

assume fixed model error (50%) and small observation error (1%) to provide a fair comparison. 131 

The covariance matrix is diagonal without the consideration of off-diagonals. 132 

 133 

2.3 hyDL-CO v1.0 model 134 
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We combine CNN and LSTM to obtain a hybrid model for the prediction of surface CO 135 

in China, following He et al. (2021). As shown in Fig. 1, the hyDL-CO model is an autoencoder 136 

with the latent space represented by a LSTM cell. The first three blocks of neural layers behave 137 

as an encoder, which has six convolutional layers and two max pooling layers, to extract the 138 

features hidden in the input data. A dropout layer is added after each pooling layer to prevent 139 

data overfitting. The output from the encoder is highly compressed information that is not 140 

manipulated during the training process, which is also called the latent vector. We embed the 141 

LSTM model into the DL architecture after the encoder to capture short-term changes and long-142 

term trends in the latent vectors. The output from the LSTM is then forwarded to a decoder 143 

with three blocks of layers. Each block in the decoder has one transposed convolutional layer 144 

followed by two convolutional layers. The outputs from each convolutional layer in the model 145 

are passed through the Rectified Linear Unit (ReLU) activation function to increase non-146 

linearity. Residual learning connections that forward the high-resolution features extracted by 147 

the encoder to the decoder are also added, which are shown to improve the performance of the 148 

DL model (Ronneberger et al., 2015; He et al., 2015). These connections contain trainable 149 

weights that represents more direct relationship between input and output variables. 150 

The optimization of the model is supervised by the "ground truth", which is the daily 151 

mean surface CO concentrations measured by the MEE network. The weights in the CNNs and 152 

transposed CNNs are optimized using the back-propagation algorithm (Rumelhart et al., 1986; 153 

LeCun et al., 1989), which employs the partial derivatives of cost function with respect to the 154 

truth. The loss function to be optimized is the mean square error (MSE) between the "predicted" 155 

and "true" values. We use the Adam optimizer, which is a computationally efficient algorithm 156 

for gradient-based optimization of stochastic objective functions. For a faster convergence 157 

speed and the stability of the model performance, we rescale all the features to a nearly same 158 

scale. The processing method is multiplying the original variable by a constant 10n and adapting 159 

n for each variable according to the specified scale. This processing prevents the DL model to 160 

be overfit by the features in input variables that have significantly larger scales than others. 161 

The hybrid model was built and implemented using Keras and Tensorflow, which are Python 162 
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packages that are extensively used in DL studies. Table 1 shows some of the configuration 163 

hyperparameters of the training of our model. 164 

The input variables include six meteorological variables: sea level pressure (SLP), 165 

surface incoming shortwave flux (SWGDN), 2-meter air temperature (T2M), 10-meter 166 

eastward wind (U10M), 10-meter northward wind (V10M) and total precipitation (TP); and 167 

total anthropogenic CO and volatile organic compounds (VOC) emissions. The meteorology 168 

and emission data are extracted from the GEOS-Chem model with 0.5°x0.625° horizontal 169 

resolution. Our focus area is 0-72°N, 0-180°E, and the output resolution is same as the 170 

0.5°x0.625° resolution of MERRA-2. The DL model grid thus has 288 grid boxes along the 171 

longitudinal direction and 144 for the latitude. Considering the long lifetime of CO, the 172 

concentration of surface CO is not only related to the emission and meteorological conditions 173 

at the current moment, but also at the previous moment. We trained the DL model using the 174 

information related to the “history” of CO, by adding the same set of input variables for the 175 

current day and previous four days as predictors. The information from the 5-day history has 176 

40 predictors in total for the prediction of daily mean surface CO in each day. We use 2015-177 

2018 as the training data set and 2019-2020 as the test set. The dimension of each input vector 178 

for the DL model is then (144,288,40), and the dimension of the output from the DL model is 179 

(144,288,1). 180 

 181 

3. Results and Discussions 182 

3.1 CO concentrations predicted by DL model  183 

As shown in Fig. 2A, the annual averaged MEE CO observations are broadly higher than 184 

400 ppb in E. China in 2015-2018 and can reach 1000 ppb over highly polluted North China 185 

Plain (NCP). The predicted CO concentrations by the DL model (Fig. 2B) match well with 186 

observations in 2015-2018. We find small differences between predictions and observations in 187 

Fig. 2C. The Pearson correlation coefficients are larger than 0.7 over E. China and are as high 188 

as 0.9 over highly polluted NCP (Fig. 2D). Fig. 3A-E exhibit daily variabilities of CO 189 
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concentrations over E. China, as well as NCP, Yangtze River Delta (YRD), Pearl River Delta 190 

(PRD) and Sichuan Basin (SCB) domains. There is large seasonality in the observed CO 191 

concentrations: the wintertime CO concentrations can reach 1400 ppb over E. China, and 2500 192 

ppb over highly polluted NCP; the summertime CO concentrations are about 500 ppb over E. 193 

China and 800 ppb over NCP. The predicted CO concentrations by the DL model demonstrate 194 

high consistency with observations. As shown in Table 2, the correlation coefficients between 195 

DL model and MEE CO observations are 0.98, 0.97, 0.93, 0.89 and 0.90; the biases are 9.6, 196 

18.2, -2.6, 12.7 and 17.6 ppb for E. China, NCP, YRD, PRD and SCB, respectively. 197 

The high consistency between observations and DL model in the training period (2015-198 

2018) is expected. Here we further evaluate the capability of DL model to predict CO 199 

concentrations without the inputs of CO observations (i.e., in the test period). Fig. 2E shows 200 

the MEE CO observations in 2019-2020. As shown in Fig. 2F, the DL model overestimated 201 

surface CO concentrations in 2019-2020, particularly, over highly polluted NCP. The Pearson 202 

correlation coefficients in 2019-2020 (Fig. 2H) are slightly lower than those in the training 203 

period (Fig. 2D). As shown in Fig. 3F-J, the predicted CO concentrations exhibit larger 204 

deviations from observations in 2019-2020. The correlation coefficients (See Table 2) between 205 

observed and predicted CO in the test period are 0.93, 0.92, 0.81, 0.80 and 0.83; the biases are 206 

95.7, 224.2, 22.0, 60.8 and 52.8 ppb for E. China, NCP, YRD, PRD and SCB, respectively. 207 

Consequently, the lack of inputs of CO observations in the test period led to a decline of 208 

prediction capability, but it is still high enough to provide useful information to predict CO 209 

variabilities. 210 

3.2 Changes of CO emissions inferred by DL model 211 

As shown in Fig. 3F, the predicted CO concentrations by DL model show large difference 212 

with observations in 2019-2020, by contrast, there is good agreement in 2015-2018 (Fig. 3A). 213 

The observed CO concentrations are about 650 ppb in the summer of 2015 and decreased 214 
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gradually to about 600 ppb by the summer of 2018. However, the observed CO concentrations 215 

dropped to about 550 ppb in the summer of 2019 and 2020. The rapid decrease of surface CO 216 

concentrations is dominated by highly polluted NCP (Fig. 3G), whereas the differences 217 

between predicted and observed CO concentrations are limited over other domains. It seems 218 

that the rapid decrease of surface CO concentrations over NCP 2019 is associated with an 219 

unexpected drop in CO emissions, which is not considered in the linear projection of emission 220 

inventory, and led to overestimated CO concentrations in the DL model. 221 

The unprecedented lockdowns across the world to contain the 2019 novel coronavirus 222 

(COVID-19) spread have led to a slowdown of economic activities, with pronounced declines 223 

in anthropogenic emissions. Shi and Brasseur (2020) found surface CO concentrations over N. 224 

China were 1.2-1.5 and 0.7-1.0 mg/m3 before and during the pandemic spread. Gaubert et al. 225 

(2021) suggested about 15% reduction in CO emissions over N. China due to the COVID-19 226 

controls. As shown in Fig. 3F, the MEE CO observations match well with predicted CO by DL 227 

model in early 2019, however, are much lower than the predicted CO in early 2020. By contrast, 228 

the difference between observed and predicted CO concentrations are comparable in the 229 

summer of 2019 and 2020. The large discrepancy between observations and predictions in early 230 

2020 thus, reflects the decline of CO emissions caused by COVID-19 controls, which is not 231 

considered in the linear projection of emission inventory. 232 

3.3 Comparison between DL model and KF assimilation 233 

Fig. 2I-P show the MEE CO observations and assimilated CO concentrations by KF in 234 

2015-2018 and 2019-2020, respectively. While the spatial distributions of assimilated CO 235 

match well with observations, the CO concentrations in the assimilations are noticeably lower. 236 

As shown in Fig. 3A-E and Table 2, the differences between assimilated and observed CO are 237 

-114.9, -139.6, -58.0, -108.8 and -29.3 ppb for E. China, NCP, YRD, PRD and SCB, 238 

respectively, which are larger than the differences in the DL model. Furthermore, the modeled 239 
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CO concentrations in the control runs (CR, without assimilation of CO observations) are much 240 

lower: the differences are -409.6, -512.3, -246.0, -400.5 and -172.4 ppb for E. China, NCP, 241 

YRD, PRD and SCB, respectively. The dramatic underestimations of CO concentrations in 242 

model simulations have been reported in recent studies (Feng et al., 2020; Peng et al., 2018), 243 

which could be associated with significant model representation error because most MEE 244 

stations are urban sites (Tang et al., 2021). It reveals the important discrepancy between DL 245 

and data assimilations: the analyzed concentrations in KF are based on the a priori and observed 246 

concentrations by considering the model and observation errors, which is not designed to 247 

reproduce the observations. In addition, the correlation coefficients are 0.99, 0.99, 0.98, 0.94 248 

and 0.96 for E. China, NCP, YRD, PRD and SCB in 2015-2018 in the KF, respectively, which 249 

are comparable with the DL model.  250 

As shown in Fig. 3F-J and Table 2, the difference between assimilated and observed CO 251 

concentrations in 2019-2020 are -85.5, -66.3, -52.9, -89.3 and -18.7 ppb for E. China, NCP, 252 

YRD, PRD and SCB, respectively, which are comparable the differences in DL model except 253 

highly polluted NCP, even the MEE CO observations are not inputted in DL model in the test 254 

period. The correlation coefficients are 0.99, 0.99, 0.97, 0.96 and 0.96 for E. China, NCP, YRD, 255 

PRD and SCB in 2019-2020 in the KF, respectively, which are higher than the DL model. In 256 

addition, Fig. 4A-B show the relationships between modeled CO and MEE CO observations. 257 

Both DL and KF show dramatic improvements in respective to the CR simulations in Fig. 4A-258 

B, while the performance of the DL model is better than KF in the training period (Fig. 4A). In 259 

addition, the comparable performances between DL and KF in 2019-2020 (Fig. 4B) 260 

demonstrate the good temporal extensibility of DL model, i.e., skills learned in the training 261 

period can be extended to the following years with a limited decline in the prediction effects. 262 

3.4 Evaluation with independent MEE CO observations 263 

Fig. 5A-B show the spatial distributions of predicted CO concentrations by DL model 264 
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and MEE CO observations; Fig. 6A-B further exhibit the locations of randomly selected 265 

independent MEE stations (about 10% of total stations). These independent stations are not 266 

used in both DL model and KF in 2015-2020. We find good agreements between predicted CO 267 

concentrations by DL model and MEE CO observations. The DL model suggests the highest 268 

CO concentrations in the Shanxi province, by more than 1200 ppb, and background CO 269 

concentrations by about 400 ppb over remote areas. By contrast, the CO concentrations in the 270 

KF (Fig. 5C-D; Fig. 6C-D) are lower, and the highest CO concentrations are found in NCP 271 

rather than Shanxi province. As shown in Fig. 7A-E, the DL model demonstrates smaller bias 272 

in respective to independent MEE CO observations and higher correlation coefficients than KF 273 

in 2015-2018, suggesting better capability to predict CO concentrations. In 2019-2020 (Fig. 274 

7F-J), the DL model exhibits a smaller bias over E. China, but larger bias than KF over highly 275 

polluted NCP. The Pearson correlation coefficients are smaller in DL in 2019-2020 (See Table 276 

2).  277 

As shown in Fig. 4C-D, the assimilated CO concentrations by KF are closer to the control 278 

simulations with larger deviations from the MEE CO observations than those in Fig. 4A-B. It 279 

demonstrates the decline of assimilation effects when observations are unavailable. On the 280 

other hand, the slopes in the linear fits are 0.89 and 0.92 in DL and KF in 2015-2018 (Fig. 4C), 281 

respectively, and become 0.80 and 1.02 in 2019-2020 (Fig. 4D). The deviations in the slopes 282 

reflect an underestimation of CO concentrations in the DL model at grids with extremely high 283 

CO concentrations. DL model predicts CO concentrations based on the skills learned in the 284 

training process. However, the training is dominated by the majority of CO observations with 285 

low and medium CO concentrations, while the extreme high CO concentrations (i.e., extreme 286 

pollution events) cannot be learned sufficiently. By contrast, KF is driven by observations 287 

directly, and thus, both high and low CO concentrations can be simulated. In addition, because 288 

most MEE stations are urban sites, the good agreement between DL model and MEE CO 289 
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observations may not be able to ensure the accuracy of predicted CO concentrations over 290 

remote rural areas. Integration of modeled CO concentrations in the DL model in future studies 291 

may improve predicted CO concentrations over remote areas without local observations. 292 

4. Conclusion 293 

A hybrid DL model (hyDL-CO), based on CNN and LSTM, was built in this work to 294 

provide a comparative analysis between DL and KF to predict CO concentrations in China in 295 

2015-2020. We find the performance of the DL model is better than KF in the training period 296 

(2015-2018): the bias and correlation coefficients are 9.6 ppb and 0.98 over E. China, and -297 

12.5 ppb and 0.96 over grids with independent observations. By contrast, the assimilated CO 298 

concentrations by KF demonstrate comparable correlation coefficients but larger negative 299 

biases: the bias and correlation coefficients are -114.9 ppb and 0.99 over E. China, and -252.5 300 

ppb and 0.95 over grids with independent observations. The larger biases in the KF are caused 301 

by the discrepancy in the algorithm, i.e., the objective of data assimilation is to improve the 302 

simulated atmospheric compositions by considering the model and observation errors, which 303 

is not designed to reproduce the observations. Both DL and KF show better predictions than 304 

the control runs: the bias and correlation coefficients are -409.6 ppb and 0.94 over E. China, 305 

and -443.3 ppb and 0.91 over grids with independent observations. 306 

Furthermore, we find good temporal extensibility of the DL model in the test period 307 

(2019-2020): the bias and correlation coefficients are 95.7 ppb and 0.93 over E. China, and 308 

81.0 ppb and 0.91 over grids with independent observations. The correlation coefficients (0.91-309 

0.93) mean enough capability to provide useful information to predict CO variabilities without 310 

inputs of CO observations. In addition, we find an unexpected drop of CO emissions over 311 

highly polluted NCP in 2019. Our analysis further exhibits a significant decline of CO 312 

emissions in early 2020 due to the COVID-19 controls. Despite these advantages, we find 313 

noticeable underestimation of CO concentrations at grids with extreme high CO concentrations 314 
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in the DL model, because the training is dominated by the majority of CO observations with 315 

low and medium CO concentrations, and thus, the extreme pollution events cannot be learned 316 

sufficiently. This work demonstrates the advantages and disadvantages of DL models to predict 317 

atmospheric compositions in respective to traditional data assimilation. We advise more efforts 318 

to explore new applications of DL models in atmospheric environmental studies. 319 

 320 

Code and data availability: The MEE CO data can be downloaded from 321 

https://quotsoft.net/air/. The GEOS-Chem model (version 12.8.1) can be downloaded from 322 

http://wiki.seas.harvard.edu/geos-chem/index.php/GEOS-Chem_12#12.8.1. The code of the 323 

hyDL-CO model, sample data for the hyDL-CO model run and GEOS-Chem model output can 324 

be downloaded from https://doi.org/10.5281/zenodo.5913013. 325 

 326 

Author Contributions: Z.J. designed the research. W.H. and T.-L.H. developed the model 327 

code and performed the research. Z.J. wrote the manuscript. All authors contributed to 328 

discussions and editing the manuscript. 329 

 330 

Competing interests: The authors declare that they have no conflict of interest. 331 

 332 

Acknowledgments: We thank the China Ministry of Ecology and Environment (MEE) for 333 

providing the surface CO measurements. The numerical calculations in this paper have been 334 

done on the supercomputing system in the Supercomputing Center of University of Science 335 

and Technology of China. This work was supported by the Hundred Talents Program of 336 

Chinese Academy of Science and National Natural Science Foundation of China (41721002). 337 

Table and Figures 338 

Table 1. Hyperparameters used in the hybrid DL model. 339 

 340 
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Table 2. Deep learning (DL), Kalman Filter (KF) and control run (CR) in respective to MEE 341 

CO observations in 2015-2018 and 2019-2020. The locations of independent MEE stations are 342 

shown in Fig. 6. 343 

 344 

Figure 1. Hybrid DL model used in this paper. 345 

 346 

Figure 2. (A) MEE CO observations in 2015-2018; (B) Predicted CO concentrations by DL 347 

model in 2015-2018; (C-D) differences and Pearson correlation coefficients between predicted 348 

and observed CO in 2015-2018. (E-H) MEE CO observations, predicted CO concentrations by 349 

DL model and their differences, and Pearson correlation coefficients in 2019-2020. (I-P) Same 350 

as panels A-H, but for KF. The unit is ppb. 351 

 352 

Figure 3. Daily variabilities of CO concentrations from MEE, DL and KF in 2015-2018 and 353 

2019-2020. 354 

 355 

Figure 4. (A-B) Relationships between CO concentrations provided by DL, KF, control run 356 

(CR) and MEE CO observations in 2015-2018 and 2019-2020. The dots represent daily average 357 

of CO concentrations over E. China. The unit is ppb. (C-D) Same as panels A-B, but with 358 

randomly selected independent MEE stations. The locations of independent MEE stations are 359 

shown in Fig. 6. 360 

 361 

Figure 5. (A-B) Predicted by DL (contour) and MEE (dotted) surface CO concentrations in 362 

2015-2018 and 2019-2020; (C-D) Same as panels A-B, but for KF. 363 

 364 

Figure 6. (A-B) Predicted by DL (contour) and independent MEE (dotted) surface CO 365 

concentrations in 2015-2018 and 2019-2020; (C-D) Same as panels A-B, but for KF. The 366 

randomly selected independent MEE stations (about 10% of total stations) are not used in both 367 

DL and KF in 2015-2020. 368 

 369 

Figure 7. Daily variabilities of CO concentrations from independent MEE stations, DL and KF 370 

in 2015-2018 and 2019-2020. The locations of independent MEE stations are shown in Fig. 6. 371 
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Optimizers 
Learning 

rate 

EarlyStopping 

patience 

Batch 

size 
Epochs 

Validation 

split 
shuffle 

Adam 0.001 20 64 500 0.125 True 

 

Table. 1. Hyperparameters used in the hybrid DL model. 

 

 

 

 

 

 

 

Table. 2. Deep learning (DL), Kalman Filter (KF) and control run (CR) in respective to MEE 

CO observations in 2015-2018 and 2019-2020. The locations of independent MEE stations are 

shown in Fig. 6. 
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Fig. 1. Hybrid DL model used in this paper.  
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Fig. 2. (A) MEE CO observations in 2015-2018; (B) Predicted CO concentrations by DL model 

in 2015-2018; (C-D) differences and Pearson correlation coefficients between predicted and 

observed CO in 2015-2018. (E-H) MEE CO observations, predicted CO concentrations by DL 

model and their differences, and Pearson correlation coefficients in 2019-2020. (I-P) Same as 

panels A-H, but for KF. The unit is ppb. 
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Fig. 3. Daily variabilities of CO concentrations from MEE, DL and KF in 2015-2018 and 2019-

2020. 
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Fig. 4. (A-B) Relationships between CO concentrations provided by DL, KF, control run (CR) 

and MEE CO observations in 2015-2018 and 2019-2020. The dots represent daily average of 

CO concentrations over E. China. The unit is ppb. (C-D) Same as panels A-B, but with 

randomly selected independent MEE stations. The locations of independent MEE stations are 

shown in Fig. 6.  
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Fig. 5. (A-B) Predicted by DL (contour) and MEE (dotted) surface CO concentrations in 2015-

2018 and 2019-2020; (C-D) Same as panels A-B, but for KF. 
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Fig. 6. (A-B) Predicted by DL (contour) and independent MEE (dotted) surface CO 

concentrations in 2015-2018 and 2019-2020; (C-D) Same as panels A-B, but for KF. The 

randomly selected independent MEE stations (about 10% of total stations) are not used in both 

DL and KF in 2015-2020. 
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Fig. 7. Daily variabilities of CO concentrations from independent MEE stations, DL and KF in 

2015-2018 and 2019-2020. The locations of independent MEE stations are shown in Fig. 6. 
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